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Abstract

In this paper, we present a new implicit encoding tech-
nique that makes use of lower-layer packet reordering to
superimpose covert messages onto a reliable data stream.
In particular, since the TCP layer provides a reliable in-
order data stream over the unreliable network layer’s IP
datagram service, we can encode covert messages by arti-
ficially permuting IP packets before they leave the source
and reading the permutation at the destination prior to de-
livering the payload to TCP. Applying such permutations
will not adversely affect TCP’s ability to reconstitute the
transport layer data stream, since TCP is designed to be
robust against out of order network layer packet delivery.
We describe the design and operation of PERMEATE, an
open-source covert channel toolkit which implements such
a permutational covert channel over TCP, and we provide
a quantitative assessment of it’s efficacy and efficiency as a
cover channel.

1. Introduction

A covert channel is a mechanism for steganographically
superimposing illegitimate data onto a legitimate network
data stream. Although the illegitimate message is sent un-
encrypted, it remains unnoticed since it is being carried “in-
side” a legitimate flow in such a manner that it does not
essentially alter the semantics of the legitimate data when it
arrives at the intended recipient. To date, most covert chan-
nels devised can be placed in one of two broad categories:
they either (i) explicitly encode secret information in unused
portions of packet headers, or (ii) implicitly encode secret
information in inter-packet timing intervals.

• Explicit encodings (storage channels) are more com-
monly seen in literature and are easier to implement.

The basic strategy is to embed covert information into
fields that are either not used or can be readily changed
with little damage to packet processing and seman-
tics. To encode the covert message, appropriate bits
are changed in the packet headers; to decode, these bits
are read off the header fields at the destination. Several
implementations of storage channels built using TCP,
IP and UDP headers are readily available on the web
[1, 2, 3, 4, 5, 6, 7]. There are also implementations
that use ICMP [4, 8, 9, 10, 11], HTTP [12, 13, 14, 15],
DNS [16, 17] and MSN [18] protocols.

• Implicit encodings (timing channels) convey a mes-
sage based on the time in between successive packet
transmissions. According to the “Orange Book” [19],
a timing channel is possible whenever “one process
is allowed to signal information to a second process
by modulating its own use of system resources” . For
example, one design might follow Morse code: three
packets sent across the wire in a short amount of time
might be conveyed as an ’S’ (dot dot dot), while send-
ing out three more packets spaced out with a larger
amount of time in between them might convey the
message ’O’ (dash dash dash), etc. In order for tim-
ing channels to be successful, both parties must be
operating in a steady state with respect to network
and CPU load, since otherwise abrupt changes in the
traffic environment will be yield errors in the covert
channel. More problematically, channels error rates
degrade when instrumented in the wide area, since
traffic shaping/multiplexing at intermediate (network
layer) routers has the effect of reducing the variance
of inter-packet time distributions. Thus, in order for
the bimodal distribution of interpacket timings to re-
main separable at the destination, one requires extreme
differences in the interpacket timings used to encode
covert bits. This endows the shape of the legitimate
traffic with a very low entropy, making it appear bursty
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and suspicious, and drawing attention to the possible
presence of a covert channel. Timing channel im-
plementations are not as readily available as storage
channel implementations [20]. An early example was
seen in 1976 in the Multics machine where two pro-
cesses communicated by manipulating intervals be-
tween page faults [21]. More modern day implemen-
tations are found as part of tools like Squeeza [22].

1.1. Significance

Covert channels have gained notoriety because of their
prevalence and application in malware, such as those used
in password and information theft. Specifically, more and
more trojans and rootkits found in the wild instrument back-
door access to the infected host using covert channels rather
than connections to specific ports. The covert channels em-
ployed are typically implemented over various legitimate
protocols such as ICMP, UDP, TCP, as well as application
layer protocols such as http, DNS and email. Because these
protocols are required by legitimate users, they are usually
not filtered aggressively by network security elements such
as firewalls and network intrusion detection systems. Thus,
covert channels provide a mechanism for malware to instru-
ment backdoor access that bypasses security measures.

As a specific example, ICMP backdoors have been read-
ily available since 1997 when daemon9 released Loki in a
Phrack article [23, 24]. The idea behind these is to have
a non-promiscuous sniffer running in the background wait-
ing for either a specially crafted ICMP packet or a specially
crafted sequence of packets to cross the network interface.
Once the correct packet pattern is seen, a backdoor shell is
opened to the attacker. This approach arose because most
firewalls still allowed ICMP packets at the time when these
tools were first developed [25]. These backdoors were not
invincible, however since there is a small window of op-
portunity where they can be detected during the established
connection [25]. Loki became a popular tool of choice,
and gave way to other tools based on its implementation
including 007shell [25, 26] as well as Cd00r [27], which in
turn influenced Sadoor [28, 29] and Helldoor [30]. ICMP
backdoor implementations evolved to kernel modules and
an implementation by Bioforge was soon seen in a 2003
Phrack article [31] showing how to collect passwords from
a compromised server by sending a carefully crafted ICMP
packet. Other more sophisticated variations have been seen
in the wild which are not as readily available to the public
[25]. One such improvement is the release of information
(or shell) over an ICMP covert channel or other such stor-
age channel [25]. This helps to avoid detection by open
connections in the earlier versions.

Besides ICMP backdoors, many other descriptions of
covert channels can be readily found, both in reports from

the hacker community [31, 32] and in academic research
papers [33, 34, 35].

2. Background

IP packet headers are often used to implement real-
world covert channels because there are several IP header
fields that are not mandatory and can be easily manipulated.
Fields that are most often usurped for covert bandwidth in-
clude the IP identification (IP ID), Type of Service (TOS),
time-to-live (TTL) and the Options fields [36]. Before de-
scribing how some of these fields are used to implement
covert channels, we review their legitimate usage.

At the network layer, IP datagrams can be split up into
fragments that are reassembled by IP at the destination [36].
This allows IP to send out large PDUs, even if the size ex-
ceeds the MTU of a downstream router, since the routers are
able to break the packets into smaller fragments as needed.
When a large IP packet is broken into multiple IP fragments,
the first IP fragment will have an offset of zero, and its flags
will be set to MF (“more fragments”). Then, each succes-
sive fragment p (where p ranges from 1, 2, 3, 4, . . . , n) will
have offset 1500p/8 (assuming that the maximum size for
each packet is 1500 bytes and n is the total number of pack-
ets). The IP ID of all fragments, however, remains the same
as the IP ID of the original large IP packet. When the last
fragment is sent, its flags are set to 0x00 to indicate that this
is the last fragment that should be expected. It is up to a
downstream IP stack to reassemble the fragments into the
original datagram. There are several fields in the IP header
that help us in out covert channel design, including:

• The Type of Service (TOS) field in the IP header con-
sists of eight bits, and allows the specification of dif-
ferent types of IP datagrams.

• The IP identification (IP ID) field in the IP header is
a sixteen bit field that helps with fragmentation. Each
time an machine sends out an IP datagram, it sets the
datagram’s IP ID value. The IP ID value changes pre-
dictably over time; most implementations of IP incre-
ment it by some fixed value after each IP packet trans-
mission. If an IP datagram is fragmented by a router,
each fragment retains the same IP ID as the large IP
packet from which it is derived. This allows a down-
stream IP protocol stack to reassemble the fragments.

2.1. Prior Approaches over IP

An example of a storage channel over IP is Joanna
Rutkowska’s covert channel using the IP ID field [32]. The
channel uses eight bits of the sixteen bit IP ID field to en-
code covert messages. For example, suppose we want to



send the covert message “JAMIE ” which when expressed
in ASCII (hex and binary) is:

J A M I E
0x4a 0x41 0x4d 0x49 0x45
0100 1010 0100 0001 0100 1101 0100 1001 0100 0101

then this message would be sent using Rutkowska’s
toolkit over a sequence of six IP packets as follows:

[tcp] 4510 0064 [4A00] 4000 4006 4370 ...]
[tcp] 4510 0034 [4100] 4000 4006 42a0 ...]
[tcp] 4510 0034 [4D00] 4000 4006 43a0 ...]
[tcp] 4510 0064 [4900] 4000 4006 4270 ...]
[tcp] 4510 0034 [4500] 4000 4006 43a0 ...]

By manipulating the sequence of IP IDs that appear
in the packets (4A00, 4100, 4D00, 4900, 4500),
Rutkowska’s toolkit uses the high order eight bits to encode
successive ASCII characters of the covert message.

Murdoch and Lewis [37] describe the pitfalls of storage
channels implementations and the factors leading to their
discovery. They note that while one may encode covert
messages using unused bits in fields of the IP packet header,
these fields often take predictable values. For example,
while it is possible to encode a message using the options
field of the IP header, however since the options field is not
used very often, its usage could raise a red flag in network
intrusion detection systems. IP IDs are often predictable,
too, depending on the system being used, since most sys-
tems increment IP IDs for each datagram using a set cy-
cling value. TOS is also somewhat predictable, since it is
not used as much either. Therefore, implementing a covert
storage channel alone may not be the safest thing to do if
one needs to ensure that the channel remains undetected.

3. Our Approach

Our approach is based on the simple observation that
TCP provides a reliable in-order transport layer data stream
over the unreliable network layer IP datagram service.
Moreover, since TCP is designed to be robust to out of order
network layer packet delivery, we can artificially permute IP
packets before they leave the source, and read the permuta-
tion at the destination. The choice of permutation is used
to encode a covert value, and the sequence of chosen per-
mutations, in turn, encodes the covert message. Applying
such permutations does not adversely affect TCP’s ability
to reconstruct the higher layer transport layer data stream.

A coarse upper bound on the capacity of such a covert
channel can be computed by noting that if the covert chan-
nel queues n IP packets and then permutes them before
sending them, it can encode log2(n!) bits of information
for every n packets sent in its choice of permutations. It is
an easy exercise to prove that (for n sufficiently large),

(n
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and so the covert channel conveys O(n log2 n/2
n ) =

O(log2 n) covert bits per legitimate packet.
In what follows, we describe three concrete systems we

developed in the process of exploring the systems-level is-
sues involved in instrumenting such cover channels.

3.1. Scheme I

Outgoing IP packets are queued in the kernel, based on
their destination IP. Every time the queue QA of IP packets
to destination A contains n IP packets, we determine the
next k = blog2(n!)c bits of the covert message intended for
the agent at A, and will use this k bit number

C = C0 · C1 · · ·Ci · · ·Ck−2 · Ck−1

to determine how to permute the n packets before sending
them, as follows. First, note that the lower bound inequal-
ity in expression (1) and our choice of k together imply that
k 6 log2(n!), or equivalently, the set of all k bit numbers is
smaller in cardinality than the set of permutations of n pack-
ets. Myrvold and Ruskey have demonstrated [38] an O(n)
algorithm for evaluating a permutation ranking function

r : Sn → {0, 1 . . . , n!− 1}

where r is a (very particular) bijective map between the
symmetric group on n elements (as a set) and the set of
integers between 0 and n! − 1 (inclusive). In the same pa-
per, they showed that the corresponding unranking function
r−1 can also be computed in O(n) time. Thus, consid-
ering C to be a k bit number, we can use Myrvold and
Ruskey’s unranking function to quickly obtain a permuta-
tion π = r−1(C) of the n packets queued in QA. Upon
receiving n packets, the destination considers the sequence
of IP IDs of the packets to determine the permutation π.
The recipient then computes r(π) to obtain C.

Analysis. Clearly, this covert channel conveys
Ω(n log2 n

n ) = Ω(log2 n) covert bits per legitimate packet,
and hence is optimal with respect to throughput achieved.
On the down side, the covert channel scheme introduces
significant additional latency because each packet has to
wait until all n packets have been obtained before they are
sent out in permuted order. The Myrvold and Ruskey un-
ranking function r−1 is, in practice, fairly complex way
to encode an integer as a permutation. Most importantly,
because the ranking functions r and r−1 are bijections of
sets, they are extremely efficient and contribute severe sen-
sitivity to errors, in the following sense: Any error in the
received permutation (caused by a reordering or loss of IP
packets in transit) is effectively undetectable since the cor-
rupted permutation is guaranteed to lie in the domain of r,
and therefore, to be syntactically correct. Thus, while this
scheme is optimal with respect to throughput, its adoption



requires the design of an error correction mechanism (over
the covert channel) to recover from permutation corruption.
This in turn, mandates that a bi-directional covert channel
to be established, since errors must result in solicitations
for retransmission. The technical difficulties in doing this
led us to consider less efficient (i.e. lower throughput) per-
mutational covert channels which would be less sensitive to
permutational corruption due to packet loss and re-ordering.
In the next section we describe the design and implementa-
tion of one such scheme.

3.2. Scheme II

Outgoing IP packets are queued in the kernel, based on
their destination IP. Every time the queue QA of IP packets
to destination A contains 16 IP packets, we determine the
next 16-bits of the covert message

C = C0 · C1 · · ·Ci · · ·C14 · C15,

viewing C as a number in {0, 1 . . . , 65, 535}. The number
C is converted into a permutation of 16 packets, using the
map

π : {0, 1 . . . , 65, 535} → S16,

which is defined as follows. Let:

S0(C) = (i | 0 6 i 6 15, Ci = 0)
S1(C) = (i | 0 6 i 6 15, Ci = 1).

Then π(C) is the permutation obtained as follows:

(i). If min S0(C) < max S1(C): then we take π(C) to be
the elements of S1(C) in increasing order followed by
the elements of S0(C) in increasing order.

(ii). If min S0(C) > max S1(C): then since it follows that
maxS0(C) > max S1(C) > min S1(C) so we take
π(C) to be the elements of S1(C) in decreasing order
followed by the elements of S0(C) in decreasing order.

Clearly π(C) is a permutation of the numbers
{0, 1, . . . , 15}, and the two-case definition ensures that the
recipient can unambiguously identify from π(C) which
numbers are in S0(C) and which are in S1(C), and thus
reconstruct C.

In practice, before a text message can be sent, it must
be encoded in a particular scheme. We allowed for upper
and lower case encodings using both ASCII and EBCDIC.
For example, Table 1 shows the message “JAMIE” encoded
in ASCII upper case. The first 16-bit block of the covert
message “JAMIE” results in considering C to consist of the
letters “JA” (which encoded as uppercase ASCII are 0x4a
0x41). Translated this covert message into binary (network

Symbol Value 7 6 5 4 3 2 1 0
J 0x4a 0 1 0 0 1 0 1 0
A 0x41 0 1 0 0 0 0 0 1
M 0x4d 0 1 0 0 1 1 0 1
I 0x49 0 1 0 0 1 0 0 1
E 0x45 0 1 0 0 0 1 0 1

Table 1. ASCII Uppercase “JAMIE”.

order) we get 0100 0001 0100 1010, a 16-bit number
in which bits 1, 3, 6, 8 and 14 are one (1) and all other bits
are zero (0). Thus

S0(C) = {0, 2, 4, 5, 7, 9, 10, 11, 12, 13, 15}
S1(C) = {1, 3, 6, 8, 14}.

Since min S0(C) < maxS1(C), the permutation is con-
structed according to rule (i), which mandates:

π = (1, 3, 6, 8, 14, 0, 2, 4, 5, 7, 9, 10, 11, 12, 13, 15).

Thus the 16 queued packets

P0P1 · · ·Pi · · ·P14P15

are written out according to the order dictated by π:

P1P3P6P8P14P0P2P4P5P7P9P10P11P12P13P15.

We also need to let the recipient of the message to know
which of the encoding schemes has been used and which
packets are of interest. We used the TOS field of the IP
datagrams to do this, by setting the TOS to be:

AU : ‘A′ + ‘U ′ = 65 + 85 == 150
AL : ‘A′ + ‘L′ = 97 + 117 == 214

EU : ‘E′ + ‘U ′ = (197 + 228)%256 == 169
EL : ‘E′ + ‘L′ = (133 + 164)%256 == 41

The values for the initials of the encoding scheme are added
together as an 8 bit value. The recipient deduces the encod-
ing by reading the TOS field value.

Analysis. Each bit in the covert message is represented
by the placement of one IP packet. The covert channel thus
exhibits a throughput of one covert bit per legitimate packet.
While this is significantly less efficient compared to the the-
oretically optimal Scheme I, it provides certain advantages:

• The π function defined in Scheme II is not a bijec-
tion, but rather maps 216 = 65, 536 messages injec-
tively into the 16! = 20, 922, 789, 888, 000 permuta-
tions. Thus, if errors introduced by packet reordering
result in a random permutation reaching the destina-
tion, this permutation has only a

65, 536
20, 922, 789, 888, 000

≈ 3 · 10−9



probability of being syntactically correct1 (i.e. in the
range of π). Thus, compared to Scheme I, the less effi-
cient Scheme II enjoys error detection capabilities and
a more straightforward encoding process.

Evaluation. Initial trials were conducted using a pro-
gram called Scapy [39] to construct packets using our covert
channel scheme. Scapy is written in Python and enables
the construction of any type of packet, as well as sending
and receiving of packets. Packets were constructed by hand
and collected at the recipient’s machine using the Wireshark
[40] packet sniffer. It was not possible to gauge the ef-
ficiency of the Scapy based trials, since the packets were
constructed by hand and sent one at a time.

In order to fully evaluate the efficiency of this scheme
we attempted to implement it on a Linux machine by taking
advantage of Netfilter, which allows us to catch and pro-
cess packets en route through the kernel [41]. The code
was designed as a transparent proxy over the ip_queue
module. In practice, however, we found that queueing of
16 IP packets prior to their transmission would cause TCP
layer to block the application layer because too many un-
acknowledged packets had been sent, exhausting the trans-
mission window. TCP would retransmit the same segment
repeatedly, and since RFC 2988 follows Karn’s algorithm
for taking RTT samples (which mandates that RTT must not
be estimated using segments that were retransmitted), TCP
is deprived of an estimate of round trip time (RTT). The
TCP stack interpreted the delay as extreme network conges-
tion, and following directive 5.5 of the RFC specification,
it “backs off the retransmission timer (RTO)” exponentially
(doubling it each time), following Van Jacobson’s algorithm
for adjusting RTO [42]. The net effect of this is that the TCP
layer retransmits packets with exponentially growing inter-
packet intervals, until 16 packets have been delivered to IP,
at which point they burst out, and the process repeats in
this manner. The throughput (of the legitimate channel) is
reduced tremendously because of the interactions between
TCP and the transparent proxy implementing the permuta-
tion scheme. Indeed, this difficulty was foreseen by Paxson
and Allman in Section 6 “Security Considerations”, where
they write:

This document requires a TCP to wait for a given
interval before retransmitting an unacknowledged
segment. An attacker could cause a TCP sender
to compute a large value of RTO by adding delay
to a timed packet’s latency, or that of its acknowl-
edgment. However, the ability to add delay to a
packet’s latency often coincides with the ability
to cause the packet to be lost, so it is difficult to

1An 8-bit blocksize yields a much higher probability of misparsing,
since 28/8! = 6.3 · 10−3; this was the reason we chose a 16-bit blocksize
for our channel design.

see what an attacker might gain.. [43].

The next permutational covert channel scheme we describe
attempts to circumvent the above problem by reducing the
maximum number of IP packets queued for each covert bit
transmitted.

3.3. Scheme III

Scheme III is a further simplification of Scheme II, de-
signed to circumvent the TCP layer stalling we encountered
in that system. The new scheme operates as follows. Sup-
pose we want to transmit a covert message C consisting of
a sequence of n bits

C = C0 · C1 · · ·Ci · · ·Cn−1 · Cn,

to machine A. We begin by determining bit Ci of the covert
message to A. For each covert bit, we allow two IP packets
to destination A to go through. If Ci = 0, we ensure that
the two packets are in ascending order by IP ID; if Ci = 1,
we ensure that the two packets are in descending order by
IP ID. Thus, we transmit C by taking the next 2n IP packets
submitted by TCP for A:

P0, P1, . . . , P2i, P2i+1, . . . , P2n−2, P2n−1.

The decoding of the covert message can be deduced by
considering the sequence of IP IDs and computing the first
derivative of successive pairs: a negative first derivative sig-
nifies a 1 while a positive first derivative signifies a 0.

For example, let us see how letter ’J’ (hex 0x4a, binary
0100 1010) can be encoded in a suitable permutation of
16 IP packets. Sixteen queued packets

P0P1 · · ·Pi · · ·P14P15

are sent out (2 at a time) according to the order:

P0P1P3P2P4P5P6P7P9P8P10P11P13P12P14P15.

The question of whether packets 2i and 2i + 1 arrive in
ascending or descending IP ID order determines the value
of covert bit i. Figure 1 shows the character ‘J’ being trans-
mitted over a sequence of 16 IP packets.

Analysis. Each bit in the covert message is represented
by the placement of two IP packets. The covert channel thus
exhibits a throughput of 1/2 covert bit per legitimate packet.
While this is significantly less efficient compared to the the-
oretically optimal Scheme I, and only 50% the throughput
of Scheme II, it provides certain advantages:

• A concrete implementation of Scheme III only re-
quires delaying at most one IP (when the covert bit
that needs to be transmitted is a 1, and does not require
delaying any IP packets when the covert bit that needs
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Figure 1. Transmitting ‘J’ over a sequence of
16 IP packets.

to be transmitted is a 0. Thus, amortizing, if the covert
message consists of roughly an equal number of 0s and
1s, the expected queue depth is 0.5 packets.

• In terms of error resilience, we note that if packet 2i
and 2i+1 arrive in reversed order (because of network
effects), this manifests a one bit error in bit i of the
covert message at the receiver.

IDs : 23 sent(covert:0) → 32 rcvd(covert:1)
IDs : 32 sent(covert:1) → 23 rcvd(covert:0)

However, if packet 2i and 2i− 1 arrive in reversed or-
der (because of network effects), this also produces, on
average a one bit error of the covert message received
(bit i and/or i− 1):

IDs : 2345 sent(covert:00) → 2435 rcvd(covert:00)
IDs : 2354 sent(covert:01) → 2534 rcvd(covert:00)
IDs : 3245 sent(covert:10) → 3425 rcvd(covert:00)
IDs : 3254 sent(covert:11) → 3524 rcvd(covert:00)

Thus packet re-ordering produces localized corruption
in the covert bitstream.

Single packet loss has reasonable side effects as well.
If an even number of packets are lost, this causes the
corresponding bits of the covert channel to be lost. In
contrast, if an odd number of packets are lost, this
causes a framing error which exhibits itself as a burst
of 0-valued covert bits. For example, if the first packet
P1 in the permutation representation of ‘J’ is lost, then
the residual stream:

P3P6P8P14P0P2P4P5P7P9P10P11P12P13P15...

experiences a framing error which causes the covert
message to become 0000 000.... Thus packet loss
produces either localized corruption in the covert bit-
stream, or large scale corruption that is recognizable.

4. PERMEATE

PERMEATE is an open source project which im-
plements the permutational covert channel described
in Scheme III. It is available from Sourceforge at
http://permeate.sourceforge.net.

4.1. Implementation

The architecture of PERMEATE is depicted in Figure 2
below. Covert bits are transferred from one host (referred to
as the “client”) to another host (referred to as the “server”)
by encoding the covert bits in permutations of IP packets
en route from client to server. The interposition is achieved
at the client by causing the Linux Netfilter to forward all
outbound traffic destined to the server to the ip_queue
module. PERMEATE’s juggler application acts a transpar-
ent proxy queueing pairs of outbound IP packets from the
ip_queue module before sending them back down in ei-
ther the ascending or descending order (with respect to IP
ID). At the server, interposition is instrumented by causing
the Linux Netfilter to forward all inbound traffic destined
from the client to the ip_queue module. PERMEATE’s
anti-juggler application acts a transparent proxy queueing
pairs of inbound IP packets from the ip_queue module
and checking to see if they are in ascending or descending
order (with respect to IP ID) in order to reconstruct covert
bits, after which it returns the packets back to ip_queue
in ascending order (with respect to IP ID)2.

IP QUEUE

ANTI− JUGGLER

NETFILTERNETFILTER

Application

IP QUEUE

JUGGLER Applicaton

Client Server

Figure 2. The architecture of PERMEATE.

4.2. Covert Channel Throughput

Analyzing the design of Scheme III, we expect the bit
rate of the covert stream to be roughly half the cumula-

2While this is not technically needed for TCP to operate correctly, we
implemented it for reasons of “personal aesthetics”.



tive IP packet rate corresponding to all transport layer traffic
from the client to the server host. With IP packets of around
576 bytes, this would mean that the bit rate of the covert
channel would be roughly 1/1152 fraction of the bit rate
of the overt channel. In actuality, TCP overhead caused the
covert channel to achieve only approximately 1/3039 of the
overt channel throughput. We affirmed this analysis in sev-
eral experiments–for example over an 7.45 Mb/s overt TCP
connection, we were able to superimpose a 2.51 Kb/s covert
channel having a bit error rate of 7.51%. We note that the
overt channel’s throughput without the overhead of packet
processing in the transparent proxy was over 10.75 Mb/s–
thus proxies (with their kernel-userspace transition) caused
throughput reduction of ≈ 31%.

5. User Guide

In order for the user to be able use Permeate, he/she
needs to have root access on both the client and the server.
To run permeate on the client, type:

$ ./juggler.sh <file-to-send-covertly> <server-ip>

The script checks that the user is root and that
ip_queue is loaded, then instruments the Netfilter rule

/sbin/iptables -A OUTPUT -p tcp -d <server-ip>
-j QUEUE

and launches the juggler proxy (the permeate binary,
with the “c” flag specifying for client operation)

$ ./permeate c <file-to-send-covertly> <server-ip>

To run permeate on the server, type:

$ ./antijuggler.sh <save-covert-file-as> <client-ip>

The script checks that the user is root and that
ip_queue is loaded, then instruments the Netfilter rule

/sbin/iptables -A INPUT -p tcp -s <client-ip>
-j QUEUE

and launches the anti-juggler proxy (the permeate binary,
with the “s” flag specifying for server operation)

$ ./permeate s <save-covert-file-as> <client-ip>

The actual file transfer takes place from the client to the
server as normal traffic flows between the two hosts (e.g
SSH, HTTP, etc.)

6. Conclusion and Future Work

We have demonstrated our journey from the design of an
idealized permutational covert channel to the implementa-
tion of a real permutational covert channel. The final imple-
mentation Scheme III channel operates at roughly 1/3000
of the bit rate of the overt channel. It is also well-behaved
in the face of in-transit packet loss and packet re-ordering.

Our future efforts will involve extending PERMEATE to
support a bidirectional permutational covert channel over
bidirectional TCP streams, and then implementing a reli-
able data stream protocol using the covert channels. We also
intend to migrate PERMEATE to a loadable kernel module
(LKM) based architecture thereby circumventing latencies
introduced by crossing the kernel-userspace boundary via
ip_queue.
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